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Sex-specific association between gut microbiome
and fat distribution
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Shankuan Zhu3,4

The gut microbiome has been linked to host obesity; however, sex-specific associations

between microbiome and fat distribution are not well understood. Here we show sex-specific

microbiome signatures contributing to obesity despite both sexes having similar gut micro-

biome characteristics, including overall abundance and diversity. Our comparisons of the taxa

associated with the android fat ratio in men and women found that there is no widespread

species-level overlap. We did observe overlap between the sexes at the genus and family

levels in the gut microbiome, such as Holdemanella and Gemmiger; however, they had opposite

correlations with fat distribution in men and women. Our findings support a role for fat

distribution in sex-specific relationships with the composition of the microbiome. Our results

suggest that studies of the gut microbiome and abdominal obesity-related disease outcomes

should account for sex-specific differences.
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The human gut microbiome is a complicated, dynamic
community consisting of 10–100 trillion microbes, which
carries ~100 times more genes than the human genome1,2.

Studies have associated the gut microbiome with the host obesity,
however, little is known about how does sex modulate the asso-
ciation between gut microbiome and fat distribution. As men on
average have lower percentages of total body fat but are more
susceptible to abdominal adiposity than women3–5, we consider
sex as a pivotal factor to further the understanding of the rela-
tionship between the gut microbiome and fat distribution. This
may link to men’s elevated risk of having abdominal obesity-
induced adverse health outcomes4,6,7.

Studies revealed that the microbial transplantation from obese
to lean mice resulted in significant weight gain8,9. The findings
suggested certain microbes were directly responsible for the host
obesity and enabled the weight gain in lean mice. Studies invol-
ving human subjects also indicated that the obese and the lean
adults had different microbiota properties: their microbial com-
munities had different dominant phyla; their microbial signature
could be composed of different species; and the microbiome
diversity appeared to be lower among the obese subjects com-
pared to the lean individuals10–12. Further, studies also hypo-
thesized that the gut microbiota can potentially differ in men and
women, due to the influence of the overall obesity13. These
observations in both animal and human studies confirmed the
association between the gut microbiome and obesity. Moreover,
fat distribution, independent from total adiposity, has been well
recognized as a major predictor of cardiovascular and metabolic
outcomes14,15. Our study concerns the sex-specific associations
between the gut microbiome and abdominal obesity among
the natural population using high-precision fat distribution
measurements.

In this study, we hypothesize that the gut microbiome is not
only associated with the overall obesity, but also the fat dis-
tribution. Since men and women differ in both total body fat
proportion and distribution, we further hypothesize that there
are sex-specific microbiome signatures associated with the fat
distribution in men and women. Such microbial signatures have
not been investigated to date. To test these hypotheses, we
adopted body composition measurements from dual x-ray
absorptiometry (DXA), and the gut microbiome information
from 16s rRNA sequencing. we first visualized the unadjusted
association between the android fat ratio and microbiome char-
acteristics, including its abundance and diversity, the gynoid
fat ratio and the same microbiome characteristics. We then
conducted microbiome-wide taxa level association testing to
identify the taxa that are associated with men and women.
The results show similar microbiome characteristics, including
overall abundance and diversity, in relation to fat distribution
in both sexes; however, there is no wide-spread species-level
overlap among those microbial taxa associated with fat distribu-
tion in men and women. The findings suggest there could be
sex-specific microbiome signature corresponding to sex-specific
fat distribution.

Results
Demographic characteristics. The participants of this micro-
biome study came from the same sub-district, different house-
holds of the WELL-China study. Ten individuals did not have
DXA assessment, did not provide stool samples, or had missing
values on covariates were excluded from the study, leaving 212 for
the final analysis. Demographic characteristics of these 212 sub-
jects were summarized in Table 1. Of these 212 subjects, 45%
were men and 55% were women. The overall mean age is 51 years
for both sexes. About 61% of men versus almost 0% of women

were current smokers; 70% of men versus 30% women are cur-
rent alcohol drinkers. The prevalence for metabolic syndrome
was 17% in men and 16% in women; the prevalence for type 2
diabetes was 20% in men and 11% in women. Comparing the
male and the female participants using t-tests for continuous
variables and chi-square tests for categorical variables, the fol-
lowing characteristics are statistically significant at the p= 0.005
level: education, waist-to-hip ratio, android fat ratio, gynoid fat
ratio, daily carbohydrate intake, current smoker, current alcohol
drinker, and high-density lipoprotein.

Global association by sex. For each sex, samples were divided
into four quartiles according to the measured android and gynoid
fat ratio. The associated intervals of female android and
gynoid fat ratio were (6.6%, 9.0%), (9.0%, 10.0%), (10.0%, 10.8%),
(10.8%, 13.8%), and (12.4%, 15.6%), (15.6%, 17.0%), (17.0%,
19.6%), and (19.6%, 26.6%), respectively. The intervals of male
android and gynoid fat ratio were (9.1%, 11.6%), (11.6%, 12.6%),
(12.6%, 13.35), (13.3%, 15.4%), and (11.3%, 13.8%), (13.8%,
15.5%), (15.5%, 17.1%), and (17.1%, 25.0%), respectively. The
microbiome tertiles were created using the sum of the taxon
abundance of each subject. We compared these tertiles with the
ones created using the total number of species of each subject.
The two tertiles are very consistent. Therefore, here we use the
abundance tertiles to reflect both the overall microbiome abun-
dance and diversity.

Stratified by sex, four heat maps were created to summarize the
unadjusted association between microbiome tertiles and android
or gynoid fat ratio. The top bar color-coded the fat ratio quartiles
in male and female participants. From light to dark blue, it
represented the lowest to the highest quartiles in each sex
sequentially. The second bar is the microbiome tertiles, with the
first tertile as the least diverse and abundant group, the third as
the highest. Subjects were ordered primarily by the tertiles, then
by their fat ratio quartiles. Thus, the two bars together showed
how did the four fat ratio quartiles form each microbiome tertile.
The rows of the heat maps were the top 50 abundant species
ranked high-to-low from bottom up, and the color gradience
from white to red indicated the transformed abundance of every
species for each subject.

Figure 1a shows the association of microbiome abundance
and the android fat ratio in female subjects. 36% of the subjects
in the lowest abundance tertile are from the highest android
fat ratio quartile, whereas the second and third tertiles only
contained 24% and 15%, respectively. Although results of Fisher’s
exact test (p= 0.19) and the univariate linear regression (p=
0.06) were not significant, Fig. 1a did imply that as the
microbiome abundance and diversity increased, the ratio of
high android fat individuals decreased, and the ratio of low
android fat individuals increased. As shown in Fig. 1b the second
microbiome tertile had the most subjects from the highest
android fat ratio quartile. The result from the Fisher’s exact test
(p= 0.81) was not significant. In the linear regression, the main
effect of android fat (p= 0.41), the quadratic effect (p= 0.28)
were not significant.

Figure 1c, d shifted the attention from android fat ratio to
gynoid fat ratio in the same setup. In the female subjects, the
second microbiome tertile has the least subjects from the highest
android fat ratio group. The results from both Fisher’s Exact test
(p= 0.19) and the linear regression (p= 0.19 for android fat
ratio, p= 0.29 for the quadratic term of android fat ratio) were
not significant. However, in male subjects, there was a clear
increasing trend in gynoid fat ratio as the microbiome abundance
and diversity increased. 25% of the subjects in the lowest
microbiome abundance tertile were from the highest gynoid fat
ratio quartile; 42% in the third tertile. Although the results of
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Fisher’s exact test (p= 0.29) and the univariate linear regression
(p= 0.09) were not significant, it was still worth to observe the
differences across the microbiome abundance tertiles in Fig. 1d.

Sex-specific microbiome and android fat ratio. Wald tests were
performed on 336 taxa in the female samples and 324 in the male
samples. These two models tested android fat ratio as the major
exposure at two-sided significance value of 0.01 in male and
female subjects. Only those significant results with Log2 fold
change ≥ 1 or ≤−1 were reported as final results in Table 2. Log2
fold change ≥ 1 indicates that taxa abundance was at least doubled
with 1 standard deviation unit change in the android fat ratio;
Log2 fold change ≤−1 indicated the taxa abundance was at least
reduced in half with 1 standard deviation unit change in the
android fat ratio. The standard deviations of android fat ratio
were 1.2%, 1.4% for male and female, respectively.

Table 2 summarized the results by the direction of the
association stratified by sex. The first column was the taxa ID,
which was a unique ID generated to differentiate different species
within the same genus. The second column provided the family
level information, the third column indicated the genus. The
dictionary mapping taxa ID back to the original sequences was
provided in the Supplementary Source Data. The rows banded in

the same color across Tables 2 and 3 indicated they were exactly
the same sequence of one taxon.

In the female sample, the model did not provide enough evidence
of any taxon that was positively associated with android fat ratio.
Four taxa from three families in male subjects resulted having
positive associations with android fat ratio. Bacteroides from
Bacteroidaceae family and Holdemanella from Erysipelotrichaceae
family had effect sizes larger than 9. This indicated with one-
standard deviation increase of android fat ratio, these two taxa
abundance increased at least 29 times. Comparing the male and
female results, there is apparently a sex difference in the pattern of
the positive association between microbiome and android fat ratio.

One taxon from the Erysipelotrichaceae, Holdemanella genus
showed significant negative association with android fat ratio in
the female sample. Notably, Holdemanella genus was both
positively associated with android fat ratio in male and negatively
associated in female, however, two different species from this
genus were responsible for the observed effects. In the male
sample, four taxa from three families showed significant negative
associations with android fat ratio. Interestingly, a taxon also
from Bacteroidaceae family, the Bacteroides genus had the largest
effect size of −7.5. Among the male and female taxa that were
negatively associated with android fat ratio, no overlap at either
genus or family level was observed.

Table 1 Demographic characteristics

Male, N (%) Female, N (%) p-Valuesa

Total (N= 212) 96 (45%) 116 (55%)
Age (years), mean (SD) 50.7 (14.5) 50.7 (14.1)
Marital status 0.502
Single 5 (5.2) 5 (4.3)
Married 89 (91.7) 102 (93.1)
Widowed 1 (1.0) 3 (2.6)
Divorced 2 (2.1) 0 (0)

Education <0.005
Illiterate 15 (15.5) 40 (34.5)
Elementary school 19 (19.6) 28 (24.3)
Middle school 30 (30.9) 14 (12.1)
High school 19 (19.6) 17 (14.6)
Junior college, college, & above 14 (14.4) 17 (14.5)

Anthropometrics
Body mass index, mean (SD) 23.6 (3.0) 23 (3.0) 0.185
Waist-to-hip ratio, mean (SD) 0.94 (0.07) 0.89 (0.08) <0.005
Android fat ratio, mean (SD) 12.5 (1.2) 9.9 (1.4) <0.005
Gynoid fat ratio, mean (SD) 15.9 (3.0) 17.7 (3.0) <0.005
Life style behaviors
Daily carbohydrate intake (g), median (IQR) 223.2 (114.6) 182.0 (74.6) <0.005
Daily fat intake (g), median (IQR) 29.6 (29.4) 30.7 (29.3) 0.999
Current smoker 71 (60.7) 0 (0) <0.005
Current alcohol drinker 81 (69.8) 38(29.9) <0.005
Antibiotics use (past 3 months) 15 (15.6) 15 (12.9) 0.717
Disease history
Metabolic syndromeb 16 (16.7) 19 (16.4) 0.999
Type 2 diabetesc 13 (20.0) 9 (10.6) 0.167
Hypertensiond 19 (19.8) 15 (13.0) 0.243
Biomarkers
Fasting blood glucose (mmol/L), mean (SD) 5.4 (1.6) 5.2 (0.9) 0.190
Insulin (pmol/L), mean (SD) 40.6 (22.0) 47.9 (20.5) 0.020
Total cholesterol (mmol/L), mean (SD) 5.0 (0.9) 5.0 (0.8) 0.992
Triglycerides (mmol/L), mean (SD) 1.7 (1.2) 1.4 (1.5) 0.146
Low-density lipoprotein (mmol/L), mean (SD) 2.8 (0.7) 2.7 (0.7) 0.390
Hight-density lipoprotein (mmol/L), mean (SD) 1.5 (0.4) 1.7 (0.4) <0.005

ap-values are from chi-square tests for categorical variables and t tests for continuous variables by comparing the characteristics between men and women
bMetabolic syndrome was defined using International Diabetes Federation criteria for the Chinese population, all the measurements were taken at the baseline at the same time the stool samples were
collected
cType 2 diabetes was defined as HbA1c≥ 6.4%
dHypertension was defined as systolic blood pressure≥ 140mmHg or diastolic blood pressure≥ 90mmHg
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Sex-specific microbiome and gynoid fat ratio. Wald tests were
also performed to test gynoid fat ratio and its associated taxa
stratified by sex. The same criteria were applied in reporting the
results. The standard deviations of gynoid fat ratio were both 3%
in the male and female.

In the female sample, three taxa from two families were
discovered having significant positive association with gynoid fat

ratio. The taxon from Prevotellaceae family, Prevotella genus
showed the highest effect size of 9.6. A taxon from Lachnospir-
aceae family, Clostridium_XlVa genus showed a positive associa-
tion with effect size of 10.2 in the male sample.

Three taxa from three families in the female sample were
negatively associated with gynoid fat ratio, with the largest effect
size of −10.9 coming from a taxon of the Rikenellaceae family,
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Fig. 1 The association of microbiome abundance and fat ratio. This figure shows the global relationship between microbiome abundance and fat distribution
in men and women. The top bar indicates the distribution of android and gynoid fat ratios within each microbiome abundance tertile. The blue gradient
from light to dark encode the quartiles of the fat ratio from the lowest to the highest. The second bar represents the microbiome abundance tertiles. From
light to dark purple, it indicates the lowest to the highest microbiome abundance tertiles. The heatmap contains the top 50 most abundant microbial taxa
in men and women ranked from the most abundant to the least bottom up. They compose the rows of the heatmap. Each column represents one sample.
The color gradient indicates the abundance of a microbial taxa in a particular sample. Panels a, b show the relationships between microbiome abundance
and android fat ratio in women and man, respectively. Similarly, panels c, d show the associations between microbiome abundance with gynoid fat ratio in
women and men

Table 2 Taxa associated with android fat ratio (full modela)

Taxa ID Family Genus Log2 fold change P-adjb

Positive Male ID. 114 Bacteroidaceae Bacteroides 9.7 1.7E−05
ID. 327 Erysipelotrichaceae Absiella 7.7 4.7E−05
ID. 108 Erysipelotrichaceae Holdemanella 10.0 1.6E−05
ID. 113 Ruminococcaceae Gemmiger 7.7 5.1E−05

Negative Fc ID. 193 Erysipelotrichaceae Holdemanella −11.1 5.1E−06
Male ID. 225 Bacteroidaceae Bacteroides −7.5 4.4E−03

ID. 215 Prevotellaceae Paraprevotella −7.1 8.4E−03
ID. 75 Ruminococcaceae Clostridium_IV −4.8 4.9E−03
ID. 150 Ruminococcaceae Gemmiger −7.2 1.3E−04

aAdjusted for age, BMI, smoking, alcohol use, dietary fat intake, dietary carbohydrate intake, total energy intake, antibiotic use, and sequencing batch
bp-Values from the Wald tests are adjusted by Benjamini–Hochberg method
cF here stands for female
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Alistipes genus. In the male sample, there were four taxa
from three families having significant negative associations
with gynoid fat ratio. The taxon from the Bacteroidaceae
family, Bacteroides genus had the largest effect size of −24.2.
Comparing male and female results associated with gynoid
fat ratio, there was no genus level overlap with respect to
the same association. However, Gemmiger genus from Rumino-
coccaceae family had a positive association with gynoid fat ratio
in the female sample, a negative association in the male
sample. Since the two taxa had the same taxa ID, the two were
exactly the same species but had completely opposite effects
in women and men.

Discussion
Results from the global association indicated that men and
women shared similar association of android fat ratio and
microbiome abundance. Although Fisher’s exact test and the
univariate linear regression produced insignificant results, this

could be due to the small sample size. The heat maps (Fig. 1a, b)
suggested that as the microbiome abundance and diversity
increased, the android fat ratio decreased in both sexes. More-
over, the heat maps (Fig. 1c, d) suggested a potential negative
association between gynoid fat ratio and microbiome abundance
in both sexes. Even though, at this aggregated microbiome
abundance level, the relationship between fat distribution and
microbiome abundance in two sex were similar, when zoomed
in to the taxa level, we discovered two different sets of micro-
biomes that were responsible for this relationship.

Figure 2 summarizes all the taxa that were significantly
associated with either android or gynoid fat ratio in by sex.
The color coding indicated the type (android or gynoid)
and the direction (positive or negative) of the association.
The height of the bar indicated the absolute value of the
effect size. Each segment of the inner circle represented one
bacteria family.

Figure 2a shows a total of seven taxa that showed significant
associations with either android or gynoid fat ratio in the

Table 3 Taxa associated with gynoid fat ratio (full modela)

Taxa ID Family Genus Log2 fold change P-adjb

Positive Female ID. 180 Prevotellaceae Paraprevotella 7.9 2.3E−03
ID. 59 Prevotellaceae Prevotella 9.6 9.9E−03
ID. 113 Ruminococcaceae Gemmiger 8.2 6.5E−03

M ID. 524 Lachnospiraceae Clostridium_XlVa 10.2 4.7E−03
Negative association Female ID. 271 Lactobacillaceae Lactobacillus −6.6 6.5E−03

ID. 294 Rikenellaceae Alistipes −10.9 6.5E−03
ID. 187 Ruminococcaceae Ruminococcus −9.1 1.9E−03

Male ID. 114 Bacteroidaceae Bacteroides −24.2 1.7E−21
ID. 214 Lachnospiraceae Clostridium_XlVa −5.7 4.5E−03
ID. 151 Lachnospiraceae Coprococcus −10.0 5.5E−03
ID. 113 Ruminococcaceae Gemmiger −10.9 2.8E−03

aAdjusted for age, BMI, smoking, alcohol use, dietary fat intake, dietary carbohydrate intake, total energy intake, antibiotic use, and sequencing batch
bp-values from the Wald tests are adjusted by Benjamini–Hochberg method
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Fig. 2 Taxa associated with fat distribution in men and women. The figure summarizes four associations between microbiome abundance and fat
distribution. The colors, from blue to red, encodes the following four effects, respectively: negative and positive associations with android fat ratio, negative
and positive associations with gynoid fat ratio. The height of each bar indicates microbiome abundance on a log2 fold change scale. The inner circular
segments separate microbial taxa by their family names. Panel a shows the four effects among female samples and panel b shows the effects in male
samples
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female sample. Although the android and gynoid fat were nega-
tively associated with a Pearson correlation coefficient of −0.82 in
women. The two taxa from Ruminococcaceae family: Rumino-
coccus and Gemmiger showed disagreed effects, as Gemmiger was
positively associated with gynoid fat ratio, whereas Ruminococcus
had a negative association. Prevotellaceae family had two taxa
from the Prevotella and Paraprevotella genera that had the same
effect—positively associated with gynoid fat ratio. The rest three
families: Erysipelotrichaceae, Lactobacillaceae, and Rikenellaceae
only had one taxon made to the final results. Similarly, Fig. 2b
summarizes all the 14 taxa having significant associations with
android or gynoid fat ratio in the male sample. The Pearson
correlation coefficient of android fat ratio and gynoid fat ratio
was −0.5 in men. Three taxa from Bacteroidaceae and five taxa
Ruminococcaceae families covered three effects: both directions of
the association with android fat ratio, and negative association
with gynoid fat ratio. Three taxa from Lachnospiraceae family
covered both effect directions with gynoid fat ratio. Two taxa
from Erysipelotrichaceae family had the agreed effect. Pre-
votellaceae family’s Paraprevotella genus only had one taxon
made into the final result.

Comparing the results of the two sexes, there were three
family-level overlaps: Erysipelotrichaceae, Prevotellaceae, and
Ruminococcaceae. However, genus-level associations within these
overlapped families did not always agree between men and
women. Different taxa from Holdemanella genus, Erysipelo-
trichaceae family showed a negative association with android
fat ratio in women, but a positive association in men. Similarly,
taxa from Gemmiger genus from Ruminococcaceae family was
positively associated with gynoid fat ratio in women, but both
positively and negatively associated with android fat ratio in
men. These results indicated that on one hand, men and women
had different microbiome species associated with fat distribution;
on the other hand, the same family and genus of microbiome
could have different associations with fat distribution in the
two sexes.

Comparing to other studies, Haro et al. reported Bacteroides
genus in men was negatively associated with BMI, however no
association was observed in women13. In our study, we did not
observe any Bacteroides effect in women; however, in men, dif-
ferent taxa from the Bacteroides had both positive and negative
effects on android fat ratio. Most of the studies did not stratify
their findings by sex. Kasai et al. reported species from the
Ruminococcus genus were significantly more prevalent in obese
individuals versus the non-obese11; Million et al. pointed out that
although previous studies claimed that Lactobacillus genus had a
critical role in anti-obesity, difference species from the same
genus could actually be positively associated with obesity12. Our
results showed negative association between taxa from Lactoba-
cillus and Ruminococcus genera and gynoid fat ratio in women,
not in men. However, we have observed the same phenomenon
such as taxa from the same genus presenting opposite effect in
our studied population.

Previous studies have shown a positive association between
testosterone and android adiposity, and a positive association
between estrogen and gynoid fat deposition4,16, which are
likely to partially explain the difference in fat distribution
between men and women. Besides the association between fat
distribution and hormone, gut microbiota can also be affected
by the systemic sex hormone level. Yurkovetskiy et al. com-
pared the male and female microbiota before and after puberty
in mouse models, concluded that puberty-related hormonal
changes led to the separation in the male and female micro-
biota, as prepubescent differences were not observed. They also
observed the microbiota of castrated postpubescent male mice
getting similar to their female counterparts. Inversely, the study

also showed that microbiota elevated androgens in the mouse
model17. It has also been reported that changes in sex hormone
levels were associated with microbiome compositions in
human18,19. Although the mechanism is still unclear, there
seem to be a feedback loop between sex hormones and the gut
microbiota. Further, gut microbiota also modulates fat
deposition through producing short-chain fatty acid (SCFA) as
a bacterial fermentation product, increasing enzyme lipopro-
tein lipase (LPL), which catalyzes the release of fatty acid, and
stimulating local angiogenesis and vascular remodeling which
induces local fat accumulation20–23. Evidence have shown
obesity alters microbial colony in both mouse models and
human studies, but no studies have addressed how does
regional adiposity, in turn, affects local microbiota. Potentially,
like the interaction between sex hormone and microbiome,
there is also a feedback loop between regional adiposity and
microbiome. According to our study, the taxa associated with
android and gynoid fat ratio in men and women, although
sharing moderate overlap at family and genus level, do not have
any species-level overlap responsible for the same association.
This indicates sex could potentially determine a subgroup
of gut microbiota that are sex-hormone sensitive and respon-
sible for regional adiposity. Due to the observed sexual
dimorphism of the detected microbial taxa in men and women,
different sex hormones may preferentially select microbial
species, and these species could carry out physiological func-
tions, such as altering hormone levels, interacting with regional
adiposity.

As presented in Table 1, there were 16 (16.7%) men and 19
(16.4%) women having metabolic syndrome according to the
definition from the International Diabetes Federation24. Meta-
bolic syndrome was deemed to associate with both regional
adiposity and gut microbiota25–28, therefore we examined the
association between metabolic syndrome and regional fat mass in
the studied population. The results (see Supplementary Table 1)
indicated that after adjusted for age, education, and overall obe-
sity, android fat mass was significant in men, not in women,
whereas the gynoid fat mass was not significantly associated with
metabolic syndrome in both sexes. Model further adjusted for the
interaction between android and gynoid fat mass, the android fat
mass was significantly associated with metabolic syndrome in
both men and women. As suggested in the literature, Bacter-
oidaceae and Ruminococcaceae were often negatively associated
with metabolic syndrome27,28, our study could potentially
underestimate the positive associations between android fat ratio
and bacterial genera from these two families, and, conversely,
overestimate the negative associations.

Comparing the sociodemographic characteristics between men
and women, the patterns of education were different in the stu-
died population. Education in men tended to cluster around
middle school level, whereas in women it tended to aggregate at
the two ends: illiterate and high school above. At the lifestyle
behavior level, men and women tend to have different preference
for food and different physical activity patterns29–31. Such
differences in diet and physical activities could be impacted
by one’s education level and socioeconomic status32,33. Human
studies showed that microbiome can also be affected by diet34–36;
evidence from the animal models proposed that microbial rich-
ness and diversity could potentially be improved by physical
exercises31,37. Thus, socioeconomic status impacted lifestyle
behaviors could be another contributor to the observed microbial
difference between men and women.

This study presents a high-resolution association between
microbiome, android and gynoid fat ratio using precise mea-
surement of fat distribution. The sex-induced difference in
regional adiposity could potentially lead to the difference in the
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species of functioning microbiome that were in turn modulating
fat distribution. However, this study cannot provide the bio-
chemical mechanism behind the observed difference. Follow-up
in vitro or animal models are needed to establish the mechanism
pathways. Moreover, among the 116 female participants, 59 of
them self-reported absence of menstruation due to menopause,
51 reported normal menstruation, the other six had irregular
menstruation due to other causes. Although, potentially due
to the small sample size, the association between fat distribution
and menopausal status was not detected in the female partici-
pants (see Supplementary Tables 2 and 3), we plan to address
the menopausal status and directly measure blood hormone
levels in a larger female sample size in our follow-up study.
This will also guarantee capturing a larger variation of fat dis-
tribution in women. Further, although the gold standard for
characterizing fat distribution are measurements from DXA
and certain DXA devices have embedded algorithms to
estimate visceral and subcutaneous fat masses, the algorithms for
this estimation is not Asian-specific. Literatures suggest that
android fat mass is more closely associated with metabolic syn-
drome in Asian populations26, whereas visceral fat mass is
more correlated with type 2 diabetes and other cardiovascular
disease outcomes38. Therefore, we are planning to develop a
visceral fat predictive model for Chinese population within our
cohort, then we will be able to further our current finding by
incorporating Asian-specific visceral and subcutaneous fat dis-
tribution information into our future studies. Finally, our study
was conducted in a southern Chinese population, to our knowl-
edge, there are no similar studies have been done in other ethnic
groups. Thus, our current results potentially face limitations in
generalizability. The WELL-China project has parallel sites
in California, Taiwan, and Singapore39. This allows us to
conduct comparative studies across myriad populations and
ethnic groups in future.

In conclusion, our study proved the hypothesis of sex-specific
association between gut microbiome and body fat distribution,
demonstrated the need for further investigation to deepen the
understanding of its mechanism. This is a valuable discovery for
more accurate microbiome-based cardiovascular and metabolic
outcomes prediction and treatment in future.

Methods
Samples and study setting. The 222 participants were part of the Wellness Living
Laboratory (WELL)-China project. Using cluster sampling, the 222 participants
were chosen from the all the communities within one subdistrict from the WELL-
China Site. WELL-China is a population-based longitudinal cohort located in the
city of Hangzhou. The major objectives of WELL-China are to investigate upstream
risk factors of chronic diseases, determinants of wellbeing, and develop approaches
leading to precision health. The participants of WELL-China are recruited from
550,000 permanent residents of 12 sub-districts aged 18–80 years old. A combi-
nation of randomized sampling and quota sampling are applied. Baseline mea-
surements in 2016 included anthropometric measurements and physical
examinations, and in-person survey. Stool, fasting venous blood, hair, and nail
samples were also collected from each participant. Stool and blood samples were
stored immediately after collection at −80 °C. Informed consent forms were
obtained from all participants in this study. The study has obtained the Institution
Review Board approvals from both Stanford University (IRB-35020) and Zhejiang
University (No. ZGL201507-3).

Body composition and diet measures. At baseline assessment, body composition
data were obtained using DXA scan (Software version 11.40.004, GE Lunar
Prodigy; GE Healthcare, Milwaukie, WI, USA), which measures fat mass, lean
mass, bone mass, and bone density. The android region of interest (ROI) is defined
as the area between the lower boundary at the pelvis cut and the upper
boundary above the pelvis cut by 20% of the distance between the pelvis and neck
cuts. The gynoid ROI is defined as the area between the upper boundary below the
pelvis cut line by 1.5 times the height of the android ROI and the lower
boundary at the two times the height of the android ROI below the upper
boundary40. This study included three major fat distribution variables: android
fat mass, gynoid fat mass, and total fat mass, which were used to derive android
fat ratio and gynoid fat ratio. The former was defined as the ratio of android

fat mass to the total fat mass; similarly, the latter was the ratio of gynoid fat mass
to the total fat mass. Android fat ratio has very weak correlation with total body fat,
whereas gynoid fat ratio has intermediate correlation with total body fat. (see
Supplementary Table 4) Diet measurements included carbohydrates, fat, protein
intakes and total daily energy intakes were measured via a 26-item Food Frequency
Questionnaire (FFQ) developed and validated within the same population41.
Information on smoking and alcohol consumption was obtained from an in-person
survey at baseline.

Sequence processing and OTU mapping. The detailed DNA extraction and
16S rRNA V4 region sequencing method is described in the Supplementary
Method. To prepare the raw sequences for mapping and correct amplicon
errors, the study employs the Divisive Amplicon Denoising Algorithm (DADA)
from the open-source R package—DADA2. The implementation includes the
following steps: filtering, trimming, dereplication, merging paired reads, chimera
recognition and removal, and taxonomy assignment. This algorithm has been
benchmarked and compared to four other popular algorithms: UPARSE, MED,
Popular Mothur, and QIIME. DADA2 demonstrated the highest precision rate42.
The denoised sequences are mapped to the GreenGenes reference database43.
To ensure high accuracy, taxonomy is assigned at 97% identity. All the
mapping and the following analysis were done in R (version 3.5.1). The plots
for sequencing quality and error rate are included in the Supplementary Figs. 1
and 2.

Global association of microbiome and fat distribution. Based on our central
hypothesis, the study visualized the unadjusted association between microbiome
abundance and android fat ratio, and gynoid fat ratio, stratified by gender. We first
transformed the microbial abundance at the species level using
variance–stabilization–transformation from the DESeq2 package. Then, calculate
the total microbiome abundance, and the total number of different microbiome
species in each subject. We also examined the association between the microbiome
abundance and diversity, the correlation coefficient was 0.99 (p < 0.001) in both
men and women. Then divided the subjects into tertiles using the microbiome
abundance, then diversity, and compared the two sets of tertiles. The two tertiles
shared high level of agreements. Thus, the study employed the microbiome
abundance tertile to represent both the abundance and diversity in each subject.
The quartile cutoffs of android fat ratios for men and women were calculated
separately. We generated four heat maps to visualize the unadjusted associations
and employed Fisher’s exact test and univariate linear regression to examine the
independence between microbiome tertiles and fat distribution. When a potential
quadratic relationship was observed in the heat map, the linear model included a
quadratic term of the corresponding variable.

Data preparation for testing. To prepare the sequencing data for taxa level
testing, a size factor for each sample was estimated using the median ratio
method44. This step ensured samples at different sequencing depths were com-
parable. Each taxa’s gene-wise dispersion was also estimated using maximum
likelihood, modeling read counts as a negative binomial distribution. A gene-
specific dispersion parameter was applied to adjust dispersions across gender
stratified samples.

Taxa level testing for associations. Wald tests with taxa abundance as the pri-
mary outcome were performed using DESeq2 package45. Taxa were filtered in men
and women separately, keeping only those with more than five raw counts in
more than 7% of the samples. The filtering results in 324 taxa for men and 336
women. The remaining taxa were individually tested against android fat ratio and
gynoid fat ratio as the main exposures in the final model. Given the importance
of sex-difference to this study, the potential for sex-specific relationships with
adjustment covariates, and the sample size this study fit separate models for
men and women. Android and gynoid fat ratio were standardized. We included
following covariates to the generalized linear model: age, daily fat intake, daily
carbohydrate intake, daily total energy intake, smoking, alcohol consumption,
body mass index (BMI), past-3-month antibiotic use, and sequencing batch. BMI
was included in the model, as previous literatures have indicated that BMI, as a
measurement of overall obesity, was associated with human gut microbiome13,46,47.
Therefore the model will allow us to obtain the effects of fat distribution on the
gut microbiome independent from the overall adiposity. There are potentially
other methods to adjust for overall obesity, such as including total fat mass and
height into the model instead of BMI. The total fat mass and height are associated
with BMI in both men and women and explained 87% and 88% of the variability in
BMI respectively (see Supplementary Tables 5 and 6). Therefore, the model still
included BMI as the measurement of overall obesity. Effects were measured in
Log2 fold change indicating the changes in the taxa abundance in terms of the
power of 2. p-Values from the Wald tests for the coefficients of android and gynoid
fat ratio were adjusted using Benjamini–Hochberg procedure48. We have also
conducted sensitivity analysis to examine the effect without including the antibiotic
use. (See Supplementary Table 7).
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequencing data that support the findings of this study has been made publicly
available at the NIH National Center for Biotechnology Information Sequence Read
Archive (SRA) with BioProject ID PRJNA533934. Accession codes are provided in the
supplementary material. The sample data are available from the corresponding author
upon reasonable request.

Code availability
The R programming codes related to the statistical analysis are publicly available as part
of the supplementary materials.
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